Visualization of the Macrophage's Dynamic in TB-HIV Co-Infection Using the Molecular Imaging Techniques: A Narrative Review

Fuad Minan Zuhri

Abstract


Introduction: Mycobacterium tuberculosis (Mtb) and human immunodeficiency virus (HIV) collaborate in order to weaken the immune system and increase the burden of both illnesses. Macrophages as the first intracellular niche against Mtb infection, are also involved in the persistence of the HIV infection, and may have an important role in the of tuberculosis (TB)-HIV co-infection. Improved knowledge of the macrophage function and pathogenesis dynamics may contribute to the development of newer and better diagnosis technique, prognosis assessment, and therapeutic intervention. By monitoring changes in the expression of molecular targets, macrophage identification methods that use molecular imaging techniques for cell image analysis can efficiently provide important information about macrophage biology and evaluate early response to therapy, which can facilitate medical personnel in the identification and treatment of TB-HIV disease. Methods: This study is a narrative review highlighting the utilization of molecular imaging techniques to capture macrophage dynamics in TB-HIV co-infection. Result and conclusion: Confocal laser scanning microscopy live imaging, flow cytometry, immunofluorescence microscopy, histochemical staining, scanning electron microscopy (SEM), and deconvolution microscopy images are among several molecular imaging techniques that can be used to visualize macrophage dynamics in TB-HIV co-infection.


Full Text:

PDF

References


Kemenkes RI. RENCANA AKSI NASIONAL KOLABORASI TB HIV. 2021.

WHO. WHO global lists of high burden countries for tuberculosis ( TB ), TB / HIV and TB ( MDR / RR-TB ),. World Health Organization; 2021.

Hoerter A, Arnett E, Schlesinger LS, Pienaar E. Systems biology approaches to investigate the role of granulomas in TB-HIV coinfection. Front Immunol. 2022;1(October):116.

Bell LCK, Noursadeghi M. Pathogenesis of HIV-1 and Mycobacterium tuberculosis co-infection. Nat Publ Gr. 2017. http://dx.doi.org/10.1038/nrmicro.2017.128

Soraya DAH, Artika DM. Profil Pasien Koinfeksi TB-HIV Di Rumah Sakit Umum Pusat Sanglah Bali Tahun 2013. E-Jurnal Med. 2016;5(7):59.

Maddocks S, Scandurra GM, Nourse C, Bye C, Williams RB, Slobedman B, et al. Gene expression in HIV-1 / Mycobacterium tuberculosis co-infected macrophages is dominated by M . tuberculosis. Tuberculosis. 2009;89(4):28593. http://dx.doi.org/10.1016/j.tube.2009.05.003

Khan N, Divangahi M. Mycobacterium tuberculosis and HIV Coinfection Brings Fire and Fury to Macrophages. J Infect Dis. 2018;217:18513.

Li Y, Liu T. Discovering Macrophage Functions Using In Vivo Optical Imaging Techniques. Front Immunol. 2018;9(March):120.

Han Y, Gu Y, Zhang AC, Lo Y. Lab on a Chip Review : imaging technologies for flow cytometry. Lab Chip. 2016;463947.

Dammes N, Peer D. Theranostics Monoclonal antibody-based molecular imaging strategies and theranostic opportunities. Theranostics. 2020;10(2).

Li X, Wang R, Zhang Y, Han S, Gan Y, Liang Q. Molecular imaging of tumor-associated macrophages in cancer immunotherapy. Ther Adv Med Oncol Rev. 2022;(X):122.

Macneil A, Glaziou P, Sismanidis C, Maloney S, Floyd K. Global Epidemiology of Tuberculosis and Progress Toward Achieving Global Targets 2017. Morb Mortal Wkly Rep. 2019;68(11):2636.

Bilqishti AF, Jausal AN, Lampung U, Anatomi B, Lampung U. Hasil Pengobatan Pada Tuberkulosis Dengan Ko-infeksi HIV Treatment Results In Tuberculosis With HIV Co-infection. Med J Lampung Univ. 2018;7(3):2026.

Permatasari J, Meirista I, Bafadhal H. Hubungan Kombinasi Antiretroviral Terhadap Kadar CD4 Pasien Relations of Antiretroviral Combinations to CD4 Levels of HIV TB Patiens in RSUD H . Abdul Manap Jambi. J Phamacy Sci. 2021;6(2):759.

Kemenkes RI. Buku Petunjuk TB-HIV untuk Petugas Kesehatan. Jakarta: Direktorat Pencegahan dan Pengendalian Penyakit; 2018.

Muna N, Cahyati WH. Determinan Kejadian Tuberkulosis pada Orang dengan HIV/AIDS. Higeia J Public Heal Res Dev. 2019;3(2):16878.

Manosuthi W, Wiboonchutikul S, Sungkanuparph S. Integrated Therapy for HIV and Tuberculosis. AIDS Res Ther. 2016;13(1):22.

Nursalam N, Kurniawati ND, Misutarno, Solikhah F. Asuhan Keperawatan Pada Pasien Terinfeksi HIV/AIDS. Salemba Medika; 2018.

Murni, Suzana, Green CW, Djauzi S, Setiyanto A, Okta S. Hidup Dengan HIV-AIDS. Jakarta: Yayasan Spiritia; 2016.

Silitonga YAM, Kurniati I. Kolaborasi Tuberculosis (TBC) dan Human Immunodeficiency Virus (HIV). Medula. 2019;9(1):27684.

Pawlowski A, Jansson M, Skold M, Rottenberg ME, Kallenius G. Tuberculosis and HIV Co-Infection. PLoS Pathog. 2012;8(2).

Auld SC, Staitieh BS. HIV and the tuberculosis set point: how HIV impairs alveolar macrophage responses to tuberculosis and sets the stage for progressive disease. Retrovirology. 2020;17(32):112. https://doi.org/10.1186/s12977-020-00540-2

Refai A, Gritli S, Barbouche M, Essafi M. Mycobacterium tuberculosis Virulent Factor ESAT-6 Drives Macrophage Differentiation Toward the Pro-inflammatory M1 Phenotype and Subsequently Switches It to the Anti-inflammatory M2 Phenotype. J Front Cell Infect Microbiol. 2018;8(September):114.

Pathak SK, Basu S, Basu KK, Banerjee A, Pathak S, Bhattacharyya A, et al. Direct extracellular interaction between the early secreted antigen ESAT-6 of Mycobacterium tuberculosis and TLR2 inhibits TLR signaling in macrophages. Nat Immunol. 2007;8(6):6108.

Bryson BD, Rosebrock TR, Tafesse FG, Itoh CY, Nibasumba A, Babunovic GH, et al. Heterogeneous GM-CSF signaling in macrophages is associated with control of Mycobacterium tuberculosis. Nat Commun. 2019;10(2329). http://dx.doi.org/10.1038/s41467-019-10065-8

Yoshihiko H, Tse DB, Rochford G, Prabhakar S, Hoshino S, Chitkara N, et al. Mycobacterium tuberculosis-Induced CXCR4 and Chemokine Expression Leads to Preferential X4 HIV-1 Replication in Human Macrophages. J Immunol. 2004;172(10):62518.

Mandal M, Pires D, Calado M, Neyrolles O, Lugo-villarino G, Ve C, et al. Modulation of Cystatin C in Human Macrophages Improves Anti- Mycobacterial Immune Responses to Mycobacterium tuberculosis Infection and Coinfection With HIV. J Front Immunol. 2021;12(November):116.

Lautwein A, Burster T, Lennon-Dumnil, Ana-Maria, Overkleeft HS, Weber E, et al. Inflammatory stimuli recruit cathepsin activity to late endosomal compartments in human dendritic cells. Eur J Immunol. 2002;32(12):334857.

Pierre P, Mellman I. Developmental regulation of invariant chain proteolysis controls MHC class II trafficking in mouse dendritic cells. Cell. 1998;93(7):113545.

Zhang W, Zi M, Sun L, Wang F, Chen S, Zhao Y, et al. Cystatin C regulates major histocompatibility complex?IIpeptide presentation and extracellular signal?regulated kinase?dependent polarizing cytokine production by bone marrow?derived dendritic cells. Immunol Cell Biol. 2019;97(10):91630.

Hsing LC, Rudensky AY. The lysosomal cysteine proteases in MHC class II antigen presentation. Immunol Rev. 2005;207(1):pp.229-241.

Russell DG, VanderVen BC, Glennie S, Mwandumba H, Heyderman R. The macrophage marches on its phagosome: dynamic assays of phagosome function multiple mechanisms. Nat Rev Immunol. 2009;9(8):594600.

Mishra BB, Rathinam VA, Martens GW, Martinot AJ, Kornfeld H, Fitzgerald KA, et al. Nitric oxide controls the immunopathology of tuberculosis by inhibiting NLRP3 inflammasomedependent processing of IL-1?. Nat Immunol. 2013;14(1):52-60.

Dupont M, Souriant S, Balboa L, Manh TV, Rombouts Y, Poincloux R, et al. Tuberculosis-associated IFN-I induces Siglec-1 on tunneling nanotubes and favors HIV-1 spread in macrophages. Elife. 2020;9:124.

Souriant S, Balboa L, Dupont M, Pingris K, Kviatcovsky D, Cougoule C line, et al. Tuberculosis Exacerbates HIV-1 Infection through Formation in Macrophages Article Tuberculosis Exacerbates HIV-1 Infection through IL-10 / STAT3-Dependent Tunneling Nanotube Formation in Macrophages. Cellpress. 2019;358699.

Gupta D, Sharma S, Singhal J, Satsangi AT, Antony C, Natarajan K. Suppression of TLR2-induced IL-12, reactive oxygen species, and inducible nitric oxide synthase expression by Mycobacterium tuberculosis antigens expressed inside macrophages during the course of infection. J Immunol. 2010;184(10).

Singhal J, Agrawal N, Vashishta M, Priya NG, Tiwari BK, Singh Y, et al. Suppression of dendritic cell-mediated responses by genes in calcium and cysteine protease pathways during Mycobacterium tuberculosis infection. J Biol Chem. 2012;287(14).

Mehto S, Antony C, Khan N, Arya R, Selvakumar A. Mycobacterium tuberculosis and Human Immunodeficiency Virus Type 1 Cooperatively Modulate Macrophage Apoptosis via Toll Like Receptor 2 and Calcium Homeostasis. PLoS One. 2015;10(7):120.

Mndez-Samperio P. Diagnosis of Tuberculosis in HIV Co-infected Individuals : Current Status , Challenges and Opportunities for the Future. J Immunol. 2017;86(2):7682.

World Health Organization. Automated real-time nucleic acid amplification technology for rapid and simultaneous detection of tuberculosis and rifampicin resistance: Xpert MTB. (No. WHO/HTM/TB/2013.16). World Health Organization; 2013.

Alland D, Rowneki M, Smith L, Ryan J, Kanselir M, Simmons, AM, Persing D, et al. Xpert MTB/RIF Ultra: a new near-patient TB test with sensitivity equal to culture. In: In Conference on Retroviruses and Opportunistic Infections. 2015. hal. 236.

Donnellan S, Pennington SH, Ruggiero A, Martinez-rodriguez C, Pouget M, Thomas J, et al. BRIEF REPORT A Quantitative Method for the Study of HIV-1 and Mycobacterium tuberculosis C oinfection. J Infect Dis. 2023;227(5):70813. https://doi.org/10.1093/infdis/jiac491




DOI: https://doi.org/10.33846/hd10205

Refbacks





____________________________________________________________________________________________________________________________________________

Health Dynamics || Open Access Journal || Online version only || Publisher: Knowledge Dynamics || ISSN: 3006-5518 (online) || Contact: healthdynamics.journal@gmail.com; +8801814901991; +6282136364408